在计算电磁学领域,时域间断有限元算法(DGTD)一般基于模型空间的不规则网格划分和单元上高阶多项式插值计算。同样的插值阶数,二维空间四边形网格划分比三角形网格划分具有更少的自由度和更高的计算效率。然而,传统基于等参变换和多项式张量积插值的基函数空间在四边形单元上仅具有低阶完备性,且稳定性和精度受网格畸变影响较大。为此,提出了一种基于不规则四边形网格的高阶B样条插值DGTD方法,用于Maxwell方程的求解。文章采用的B样条基不仅具有高阶多项式空间的插值完备性,而且完全消除了单元内部自由度。此外,Maxwell方程离散系统的各系数矩阵还具有精确的解析形式。使用该方法分析腔体的本征模和楔形体的电磁散射,结果表明,相较于COMSOL软件最大允许时间步长提高2.5倍,计算所需未知量减少25%,证实了本文算法的高稳定性和高精度特点。